# 线性代数二级结论
# 特征值相关
若 A 是三阶矩阵, A∗ 是伴随矩阵, tr(A) 是 A 的迹,证明:
∣λE−A∣=λ3−tr(A)λ2+tr(A∗)λ−∣A∣
不妨设 A=a11a21a31a12a22a32a13a23a33 ,则
D=∣A−λE∣=a11−λa21a31a12a22−λa32a13a23a33−λ=a11a21a31a12a22−λa32a13a23a33−λ−λa21a310a22−λa320a23a33−λ=a11a21a31a12a22a32a13a23a33−λ−a110a31a12λa32a130a33−λ−λa22−λa32a23a33−λ=∣A∣−a11a210a12a220a13a23λ−λa11a31a13a33−λ−λ[a22a32a23a33−λ−λa320a33−λ]=∣A∣−λM33−λ[M22−a110a13λ]−λ[M11−a220a23λ−λ(a33−λ)]=∣A∣−λM33−M22λ+a11λ2−λM11+λ[a22λ+a33λ−λ2]=∣A∣−(M11+M22+M33)λ+(a11+a22+a33)λ2−λ3=∣A∣−(A11+A22+A33)λ+tr(A)λ2−λ3=−λ3+tr(A)λ2−tr(A∗)λ+∣A∣
故
∣λE−A∣=(−1)3∣A−λE∣=λ3−tr(A)λ2+tr(A∗)λ−∣A∣